Gene expression profiling of the host immune response to infection with *Mycobacterium tuberculosis*

Identification of host biomarkers in tuberculosis
The need for biomarkers

- Tuberculosis (TB) disease is still a major health problem.
- 1/3 of the world population is infected, about 2 million people die of disease each year.
- Vaccination is not very successful → global search for new vaccination strategies.

but …

- How to determine success of vaccination?
- Potentially long latent phase before disease development, not all infected persons develop disease.
- Need for surrogate endpoints that “predict” (lack of) protection early after vaccination.
The need for biomarkers in tuberculosis

- Identify host biomarkers that can be used as surrogate endpoints and “predict” (lack of) protection early after vaccination.

- Identify host biomarkers that predict protective host cellular immunity in household contacts.

- Identify host biomarkers that identify latently infected household contacts that are developing active TB.

- Identify host biomarkers that predict (in)adequate responsiveness to therapy in active TB patients.
Current status of biomarkers in tuberculosis

- Very little is known about markers that are specifically regulated early after infection or vaccination.
- IFNγ is frequently used as an indicator of immune activity but not a true biomarker.
- Probably single biomarkers are not sufficient, need for multicomponent signatures.
- Preferably use assays that can measure multiple potential biomarkers simultaneously.
- Assays should be robust, easy to perform and transferable to developing countries.
<table>
<thead>
<tr>
<th>Method</th>
<th>Selection of Genes</th>
<th>RNA Requirement</th>
<th>Special Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microarray</td>
<td>Thousands of genes.</td>
<td>± 2 µg</td>
<td>No selection of genes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 0.2 µg</td>
<td>Expensive. Enormous amount of data. Less quantitative.</td>
</tr>
<tr>
<td>RT-Multiplex Ligation-dependent Probe Amplification (RT-MLPA)</td>
<td>± 60 genes.</td>
<td>± 0.05 µg</td>
<td>Selection of genes of interest. Genes can be changed easily. (Semi) quantitative.</td>
</tr>
<tr>
<td>Quantitative PCR (Taqman)</td>
<td>Single gene.</td>
<td>± 0.2 µg</td>
<td>Selection of gene of interest. Genes can be selected easily. Quantitative.</td>
</tr>
</tbody>
</table>

- **Broad screen for new biomarkers on few samples.**
- **Testing a set of candidate biomarkers in larger groups.**
- **Testing single candidate biomarkers in larger groups.**
RT-MLPA (Multiplex Ligation-dependent Probe Amplification)

Hybridization

Ligation

PCR amplification

Fragment run

Fragment length analysis

Fluorescence intensity

Fragment length (bp)

PCR primer sequence

Probe 1

Probe 2

cDNA target A

cDNA target B
RT-MLPA (Multiplex Ligation-dependent Probe Amplification)

Hybridization

Ligation

PCR amplification

Fragment run

Fragment length analysis
RT-MLPA (Multiplex Ligation-dependent Probe Amplification)

Hybridization

PCR primer sequence

Probe 1 Probe 2

cDNA target A
cDNA target B

Ligation

PCR amplification

Fragment run

Fragment length analysis

Fluorescence intensity

Fragment length (bp)
RT-MLPA (Multiplex Ligation-dependent Probe Amplification)

Hybridization
- PCR primer sequence
- Probe 1
- Probe 2
- cDNA target A
- cDNA target B

Ligation

PCR amplification

Fragment run

Fragment length analysis
- Fluorescence intensity
- Fragment length (bp)
RT-MLPA (Multiplex Ligation-dependent Probe Amplification)

Hybridization

PCR primer sequence

Probe 1 Probe 2

cDNA target A

cDNA target B

Ligation

PCR amplification

Fragment run

Fragment length analysis

Fluorescence intensity

Fragment length (bp)
RT-MLPA as tool to identify biomarkers in tuberculosis

- Identify host biomarkers that predict protective host cellular immunity in household contacts - Gambia cohort.
 - 37 TST-Elispot- HHC.
 - 13 TST+Elispot+ HHC.

- Identify host biomarkers that predict (in)adequate responsiveness to therapy in active TB patients - Gambia cohort.
 - 10 TB patients - recruitment.
 - 12 TB patients - 2 months treated.
 - 12 TB patients - 4 months treated.
 - 5 TB patients - 6 months treated.
Direct ex vivo RNA isolation out of blood: PAXgene

PAXgene tube

- 9 ml tube, contains 6.5 ml fixative and is filled with 2.5 ml blood.
- Can be used with standard vacutainer system.
- Mixing ensures immediate fixation of the RNA profile.
- Fixation is longlasting, stable for more than 24h at room temperature, 1-2 weeks at 4°C, at least 2 months at -20°C, and indefinately at -80°C.
- RNA isolation is completely standardized using a kit.
- 1 tube contains ± 4 µg RNA, sufficient for > 20 assays.
RT-MLPA as tool to identify biomarkers in tuberculosis

- **Identify host biomarkers that predict protective host cellular immunity in household contacts - Gambia cohort.**
 - 37 TST-Elispot- HHC.
 - 13 TST+Elispot+ HHC.

- **Identify host biomarkers that predict (in)adequate responsiveness to therapy in active TB patients - Gambia cohort.**
 - 10 TB patients - recruitment.
 - 12 TB patients - 2 months treated.
 - 12 TB patients - 4 months treated.
 - 5 TB patients - 6 months treated.
Gambia cohort: TST- versus TST+ HHC

Gene A
(P<0.0001)

Gene B
(P<0.0002)

Gene C
(P<0.0001)

Gene D
(P<0.0018)

Gene E
(P<0.0079)

Gene F
(P<0.0143)

Gene G
(P<0.0668)

Gene H
(P<0.0002)

Peak area

TST - Elispot -
TST + Elispot +
Gambia cohort: TST- versus TST+ HHC

Gene A
(P<0.0001)

Gene B
(P<0.0002)

Gene C
(P<0.0001)

Gene D
(P<0.0018)

Gene E
(P<0.0079)

Gene F
(P<0.0143)

Gene G
(P<0.0668)

Gene H
(P<0.0002)

Peak area

TST - Elispot -
TST + Elispot +
Secondary cases
RT-MLPA as tool to identify biomarkers in tuberculosis

- Identify host biomarkers that predict protective host cellular immunity in household contacts - Gambia cohort.
 - 37 TST-Elispot- HHC.
 - 13 TST+Elispot+ HHC.

- Identify host biomarkers that predict (in)adequate responsiveness to therapy in active TB patients - Gambia cohort.
 - 10 TB patients - recruitment.
 - 12 TB patients - 2 months treated.
 - 12 TB patients - 4 months treated.
 - 5 TB patients - 6 months treated.
RT-MLPA as tool to identify biomarkers in tuberculosis

- Identify host biomarkers that predict (in)adequate responsiveness to therapy in active TB patients - Paraguay cohort.
 - 8 Acute TB (<4 days of therapy).
 - 12 TB treatment (received between 6-8 weeks treatment).
 - 16 Health care workers.
 - 4 Healthy controls.

↓

Can biomarkers identified in a West-African population be applied to other populations in Africa or maybe even world-wide?
Conclusion: Follow up of active TB patients in Africa and South-america identifies comparable potential biomarkers.
Acknowledgements

LUMC, Leiden, The Netherlands
Dept. of Infectious Diseases
Lizet Opmeer
Karin de Boer
Josine Vriend
Simone Joosten
Tom Ottenhoff

LUMC, Leiden, The Netherlands
Dept. of Medical Statistics & Bioinformatics
Jelle Goeman
Livio Finos

MC Haaglanden, The Netherlands
Eliane Leyten

RIVM, Bilthoven, The Netherlands
Dick van Soolingen

MRC, The Gambia
Martin Ota
Jayne Sutherland
Richard Adegbola

ULCD, Nijmegen, The Netherlands
Martin Boeree
Cecile Magis-Escurralbanean

BPRC, Rijswijk, The Netherlands
Frank Verreck
Richard Vervenne